Introduction of Dysport/Restylane/Perlane Injection Technique

Cosmetic Medical Training recognizes that many of the techniques and recommendations are for procedures which are considered off-label use. Our recommendations are based on many textbooks, published articles, seminars and practical knowledge and experience. The authors have attempted to maintain up to date knowledge and information in this training manual with the current standard of care. However, due to continuing flow of new research and information relating to the drugs being used in this course, we recommend that you check with the manufacturer for any changes in the package inserts, warnings and precautions.

Statement of Responsibility

All information and tools presented within this site are intended for educational purposes. We do not guarantee that the information will be completely accurate and up to date; therefore the authors will not be held responsible for any errors, omissions or inaccuracies published. Application of the knowledge is ultimately the responsibility of the practitioner.

The owners, authors and any participants disclaim all liability or loss in conjunction with any content provided here. We disclaim any liability for products or services recommended including defective products or direct, indirect, special, incidental or consequential damages, arising out of the use or the inability to use the materials/information published. We recommend that the user reviews the package inserts for all the drugs that are discussed within this training recommendation before use.

Dysport® (abobotulinumtoxin A)

History of Botulinum Neurotoxin A

In 1950, researchers at McGill discovered that botulinum toxin from the bacterial Clostridium botulinum presynaptically blocked the release of acetylcholine from motor nerve terminals. Effect was muscle weakening due to chemical denervation. It was also discovered that botulinum toxins blocked the exocytosis of acetylcholine by enzymatically degrading portions of the soluble N-ethyl maleimide-sensitive factor attachment protein receptor proteins, also known as SNARE.

In the 1970s, Dr. Alan Scott, an ophthalmologist was seeking an alternative to surgery for the correction of strabismus. He published his first study using his formulated botulinum toxin called “Oculinum” into the extraocular muscles in 1980. In 1989, onabotulinumtoxinA was FDA approved for strabismus.

In 1992, Dr. Jean Carruthers noticed an improvement in glabellar lines in patients treated with Oculinum, and published the first clinical trial for its cosmetic use. Then in 2002, Botox Cosmetics, or onabotulinumtoxinA, was approved for the use on the glabellar lines. Dysport, or abobotulinumtoxinA was FDA approved in 2009 for use on the glabellar lines.

Science of Botulinum Neurotoxin A

Botulinum neurotoxins are biological products, synthesized by bacteria, and purified for therapeutic use. Seven different serotypes of botulinum toxins occur in nature (types A through G), but most clinical products are based on the A serotype. Myobloc is the only botulinum toxin product that is based on serotype B. Botulinum toxin type A reduces acetylcholine release from motor nerves and inhibits muscular contractions at the neuromuscular junction.

The doses of botulinum neurotoxins are expressed in units of biological activity. These units are not interchangeable among different botulinum neurotoxin products. The onset of effect can occur within 24 hours. The benefit can last at least up to 4 months.

What is Dysport?

Dysport is an acetylcholine release inhibitor and a neuromuscular blocking agent. It is FDA approved and indicated for the temporary improvement in the appearance of moderate to severe glabellar lines associated with procerus and corrugator muscle activity in adult patients less than 65 years of age. Other off label use includes horizontal forehead lines and crow’s feet.

After injection, the facial muscles cease to move, and the wrinkles will diminish. Patients will begin to see effects of muscle relaxation within several days, taking up to 5 – 7 days to see full effect. Relaxation of the muscle due to Dysport® can last up to 3 – 4 months. Rarely up to 6 months.

A common misconception is that Dysport® is used to fill lines. DYSPORT® is not a type of Dermal Filler. It does not fill in lines. It relaxes muscles. DYSPORT® also does not numb your face as it affects the neuromuscular junction.

Dysport Mechanism of Action

Dysport inhibits release of the neurotransmitter, acetylcholine, from peripheral cholinergic nerve endings. Toxin activity occurs in the following sequence: Toxin heavy chain mediated binding to specific surface receptors on nerve endings, internalization of the toxin by receptor mediated endocytosis, pH-induced translocation of the toxin light chain to the cell cytosol and cleavage of SNAP25 leading to intracellular blockage of neurotransmitter exocytosis into the neuromuscular junction. Recovery of transmission occurs gradually as the neuromuscular junction recovers from SNAP25 cleavage and as new nerve endings are formed.

Comparison of Botulinum Toxins

Botox® (onabotulinumtoxinA), Dysport®(abobotulinumtoxinA) and Xeomin®(incobotulinumtoxinA) are the three FDA approved botulinum toxins for the treatment of glabellar lines in the USA. The botulinum neurotoxin molecule is a single chain polypeptide, but the formulations vary in the presence of complex proteins. Botox® contains a larger number of complexing proteins than Dysport®. Xeomin® does not contain any complexing proteins in the formulation. It is generally believed that the dosing ratio between Botox®: Dysport® : Xeomin® is around 1 : 2.5 : 1 (meaning 1 unit of Botox = 2.5 units of Dysport = 1 unit of Xeomin).

All three products have similar safety profiles. Botox® and Dysport® must be kept refrigerated, but Xeomin® may be stored at room temperature due to its high stability. All three products recommend using nonpreserved saline.

However, studies have suggested preserved saline, which contain benzyl alcohol, can be used without affecting the potency of botulinum toxin.Also, prescribing information on all three products recommend discarding if not used within 4 hours, but studies have shown no decrease in efficacy for months after reconstitution when the product was refrigerated.

Also, prescribing information on all three products recommend discarding if not used within 4 hours, but studies have shown no decrease in efficacy for months after reconstitution when the product was refrigerated.

Reconstitution with a larger volume of saline may cause a greater diffusion of the product, which may cause unwanted adverse effects. Also, a concentrated solution is less painful to the patient.

Research has shown that Dysport displayed significantly longer duration of action than Botox. Dysport also appeared to have a faster onset of action and less injection pain than Botox.

Learn more about Clinical Study of Dysport/Restylane/Perlane Injection Technique.